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ABSTRACT

Transferring designs in evolutionary robotics from simula-
tion to reality remains problematic. It has been addressed
by using quasi-static physics simulators, adding noise to en-
courage robustness, and evolving primarily in simulation
then evolving on actual hardware for fine-tuning. This pa-
per experiments with this idea: All physics simulators have
errors, but if the errors are distinct, one might profitably
use multiple simulators to detect unrealistic physical behav-
ior in simulation. Two physics simulators are used to evolve
a controller for quadruped locomotion. Preliminary results
validate some assumptions and further work is suggested.

Categories and Subject Descriptors

I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms

Experimentation

1. INTRODUCTION
Transferring designs evolved in silico to real robots re-

mains a difficult problem within Evolutionary Robotics (ER),
known as the reality gap problem. Many methods have been
introduced to address this problem. Noteably the GOLEM
project by Pollack and Lipson used a quasi-static physics
simulator[7]. This method limits the kinds of robots that
can be evolved, e.g., robots that exploit dynamics like pas-
sive walkers can not use this method. Pollack et al. [6]
evolved controllers in simulation then tranferred controllers
to a real robot which was then evolved further. Hornby et
al. [3] evolved robots directly on hardware without simula-
tion. Forgoing simulation has drawbacks: it requires robust
hardware, needs a controlled environment, has slower eval-
uation time, and is more difficult to fully automate. Jakobi
[4] proposed minimal simulations with large variations in
nonessential aspects to produce robust controllers. Koos
et al. [5] compare measurements between simulation and a
real robot to compute a simulation-to-reality (STR) dispar-
ity measurement.
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Figure 1: Quadruped in a) Open Dynamics Engine
and b) Bullet Physics Library

ER is particularly susceptible to errors in physics simula-
tors because evolution will exploit unrealistic physics that
provide any advantage. These “cheating” robots may score
a high fitness and displace other robots in the population
that had a more realistic behavior, i.e., a behavior that was
more transferable.

The idea this paper explores is informed by the following
intuition. Physics simulators attempt to produce realistic
physical behavior. A physics simulator will not succeed in
all cases. Physics simulators have their own tolerances and
sensitivities owing to the choice of integrator, collision detec-
tor, collision response, and so on. So one might reasonably
expect each physics simulator to fail in different ways. These
distinct failures might serve as a good proxy to measuring
transferability.

2. METHOD
The robot used in this investigation is a quadruped walker.

It consists of cuboid body with eight cylinders attached,
which serve as its legs. The robot has eight degrees of
freedom denoted {θ1, θ2, . . . , θ8}. In Figure 1b the state of
the robot’s joints is θi = 0 for all i. The joint range is
constrained to [−π/4, π/4]. The hinge joints are position
controlled. Four touch sensors {s1, s2, s3, s4} are associated
with the distal limbs. When limb j is in contact with the
ground, sj = 1 otherwise sj = 0.

The controller is a feed-forward artificial Neural Network
(NN) with sigmoidal activation function. It accepts four
inputs from the touch sensors sj . The NN has eight motor
outputs that determine target angle of each joint. The bias
coefficients of the NN are zero. The controller updates the
desired angle θi at 10 Hz. The genome is represented by a



32 element vector that encodes the weights wij of the NN.

θi =
π

4
tanh(

4∑

j=1

wij sj)

The robot is evaluated in two physics simulators: 1) the
Open Dynamics Engine (ODE) and 2) the Bullet Physics
Library. The physics simulators use a fixed time step of 0.01
seconds. The robots are evaluated for 10 simulated seconds.

The distance traveled in the x-y ground plane by ODE
and Bullet is denoted by d1 and d2 respectively, measured
in meters. Three experiments are conducted based on these
measurements. Experiment A maximizes d1 and minimizes
|∆d| = |d1 − d2|. Experiment B maximizes d1 and max-
imizes |∆d|. Experiment C, the control experiment, max-
imizes d1 only. Twenty independent trials of each experi-
ment are performed using the multi-objective optimization
algorithm NSGA-II[2] with a population of 20 and 250 gen-
erations.

3. RESULTS AND DISCUSSION
Figure 2 shows the non-dominated solutions for twenty

independent trials of experiment A, B, and C. In experiment
A (fig. 2a), when d1 is maximized and |∆d| is minimized, the
individuals achieve successful displacement in both physics
engines.

In experiment B (fig. 2b), when d1 and |∆d| are maxi-
mized, the same controller can achieve a high displacement
in one physics simulator and little displacement in another.
These two classes of controllers may allow for some interest-
ing analysis, discussed further in the next section.

In experiment C (fig. 2c), only d1 is maximized. The
distance d2 is shown for the sake of comparison with exper-
iments A and B. Experiment C shows that when optimizing
on the basis of only one physics simulator, the controller
performs worse in the other physics simulator, as one would
expect. However, the spread of controllers is not strongly
biased towards d2 = 0.

4. FUTURE WORK
The two classes of controllers, divided by the dashed line,

shown in fig. 2b could be analyzed to determine what makes
the controller good or bad in one simulator versus another.
This could reveal two things: 1) sensitivities of the simulator
and 2) what means a controller is using to achieve its task.

To explore this idea more fully, ideally, one would like to
use any n physics simulators that are available. However,
writing and maintaining n robot evaluators—one for each
physics simulator—is a burden. The Physics Abstraction
Layer (PAL) [1] currently supports twelve different simula-
tors. Using PAL might make this approach more practical.

Having multiple physics simulators available, one might
profitably apply multiple model approaches such as those
used in climate projection[8] to produce more robust con-
trollers.
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Figure 2: The points represent the distances
achieved by non-dominated controllers in both
physics simulators. The color of each point repre-
sents which of the twenty trials produced it: same
color, same trial. The dashed line represents the
case where the distances are the same, i.e. ∆d = 0.
The arrows represent the direction of optimization
for each experiment. Experiment B shows that a
controller can be found that performs well in one
simulator while doing poorly in the other. Experi-
ment C shows that d2 < d1 in all cases.
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