
Neural Networks Who Cheat And The Academics Who
Can’t Stop Loving Them

Shane Celis
CandNo. 79479

December 8, 2010

Abstract

This paper proposes a function ω that given
a feedforward artificial neural network and
an input will produce a metric for which in-
puts were most important to producing the
network’s output. The use of such a metric
might aid casual detection of “cheating” neu-
ral networks that discriminate based on su-
perficial input features. In addition, this pa-
per exercises the ω function on a non-trivial
problem to test its worth and the results are
mixed.

1 Introduction

The mathematical topic I would like to tackle
is analysing artificial feedforward neural net-
works that have been trained by supervised
learning. Imagine a fixed neural network de-
ployed in industry. It is difficult to diagnosis
whether it is working properly on novel in-
put , so how might one casually determine
whether the network is working? This paper

suggests one such approach.

From an engineering perspective, artificial
neural networks offer great utility: One can
approximate a function that is either poorly
understood or may contain noise. For in-
stance, one can train a network to perform
text to speech as demonstrated by Sejnowski
and Rosenburg with NETtalk[4]. Although
one can easily compute a network’s output
for any given input, it is difficult to deter-
mine why the network produces a particular
output in a larger sense. The network’s work-
ings at the finest level of detail are well under-
stood, but the bigger picture of what features
of the input a network is using to produce its
output are opaque to casual inspection. This
paper aims to propose and evaluate a tech-
nique to aid casual inspection.

This paper proposes a function ω that
given a neural network and an input produces
a metric for which inputs were most impor-
tant to producing the network’s output. The
ω function would provide a valuable means
of analysis. To test whether the ω function

1

is valuable, this paper exercises the ω func-
tion on a character recognition problem. We
will describe the ω function and how it was
constructed shortly. Let us begin with the
problem we will use.

2 Method

The problem used to exercise the ω function
is character recognition on a 16x16 grid with
a small set of fonts: Helvetica, Courier, and
Fixed. Letters ’a’ thru ’z’, both upper case
and lower case characters are used. The net-
work has 16 ∗ 16 = 256 inputs, k hidden, and
26 outputs. The activation function is a sym-
metric sigmoidal function. The monochrome
images are transformed into a vector, each
black pixel will be represented by a 1, each
white pixel by a −1. This problem was in-
spired by Hofstadter [1] where he considers
what makes an ’A’ an A.

2.1 Experiment

The focus of this paper is not to build a good
character recognition system, it is to exercise
the proposed function ω on a problem to de-
termine whether it is useful. To that end,
a duplicate set of character images will be
marked. The first pixel of the image ’a’ is
marked black, for image ’b’ the second pixel
is marked black, and so on. When a net-
work is trained using the marked set, the
network can recognize the characters via two
means: 1) Look at all 256 inputs and deter-
mine which letter it is based on that—the
hard way. 2) Look at the first 26 inputs and

use the marks that always works irrespective
of the font of the character—the easy way, or
cheating. (One can think of the marked char-
acters as a marked deck of playing cards that
allow for cheating.) A sample of the input is
shown in Figure 1.

Visual inspection of the ω function’s out-
put should allow one to tell whether a net-
work cheated for that specific input. To be
crystal clear about what constitutes success
or failure for the ω function, assume we have
or build a cheating network, a network that
only looks at the first 26 inputs for instance.
We want to see ω produce something similar
to what is titled as “success” in Figure 2. The
darker the more influential in the network’s
output, the lighter the less influential. The
success image shows that the network essen-
tially ignored most of the input and nearly
based everything on the first pixel. In the
failure case, the ω function does not provide
a good metric for how the first input is being
used to cheat. There are many other images
that would constitute failure. Other failing
images for this scenario would be an all black
or all white image for instance.

The training set contains Helvetica and
Courier fonts (total of 2 ∗ 26 + 2 ∗ 26 = 104
patterns). The testing set contains the Fixed
font (total of 2 ∗ 26 = 52 patterns). There
is a unmarked training and testing set. And
there is a marked training and testing set.
The marked testing set also contains 26 im-
ages that are blank except for the mark for
’a’ thru ’z’.

The training set will be run for different
values of hidden neurons k. Then the pro-
posed ω function will be used on cases where

2

Unmarked Marked

a

b

Figure 1: Sample of letters in Helvetica font

Success Failure

.

.

.

.

.

.

.

.

.

CheaterInput

ω Function

Figure 2: Criterion for judging ω function’s
utility.

the network can only recognized the marked
letter but not the unmarked one. On the ba-
sis of those visual images, we can determine
whether ω is useful.

2.2 Implementation (Informal)

The network was trained using backpropa-
gation. I began to implement backpropaga-
tion in Mathematica, which I have included
as ’neural-network.nb’, but for the sake of
time I used the Fast Artificial Neural Net-
work (FANN) Library [2] with Python bind-
ings. The python code is included.

2.3 Notation

Before elaborating on how the ω function
is constructed, let us define the notation
to represent neural networks. The notation
here will use a matrix formulation similar to
Rojas’[3, pp 165].

si ∈ Rn input vector
W1 ∈ Rn×k connection matrix
W2 ∈ Rk×m connection matrix
sh ∈ Rk hidden layer output
so ∈ Rm output layer output
fa activation function

(1)

In order to take care of neuron thresholds,
we use biases and an extension operator for
vectors. The vector si = (si

1, . . . , s
i
n) ex-

tended is ŝi = (si
1, . . . , s

i
n, 1). The connec-

tion matrices are also extended to hold an ex-
tra row of elements—the weights for the bias.
The superscript in si, sh, and so is purely for

3

.

.

.

.

.

.

.

.

.

1
bias

1
bias

n
inputs

m
outputs

k
hidden

W1 W2

connection matrix connection matrix

Figure 3: Three-layer network

notation purposes to discriminate between in-
put, hidden, and output respectively.

ŝi ∈ Rn+1 extended
input vector

W1 ∈ R(n+1)×k ext. matrix
W2 ∈ R(k+1)×m ext. matrix

(2)

To exercise the network we have the follow-
ing equations:

sh = fa(W1
T
ŝi)

so = fa(W2
T
ŝh)

(3)

Now that the notation is clear, we can ad-
dress the construction of ω.

2.4 Constructing the Omega
Function

We want a function ω that given an input si

and access to the weights W1 and W2, will

produce a vector in Rn.

ω : Rn → Rn (4)

This paper will build the proposed ω func-
tion from the ground up, as that will be the
easiest way to provide justification. The ac-
tivation function is assumed to be monoton-
ically increasing and fa(0) = 0, which is true
of the symmetric sigmoidal function used in
this paper.

2.4.1 Perceptron-ish

Consider a two-layer network, with one out-
put neuron as shown in Figure 4. The net-
work is very similar to a perceptron.

.

.

.

n
inputs

1
outputs

w

weight vector

Figure 4: Two-layer network with one output

What is the ω for this perceptron-ish net-
work? Let us call it ωa for this specific net-
work. There are many different functions
that could work. A natural choice is to use
the Hadamard product on the weight vector
w and the input vector si. The Hadamard
product (5) is an element-wise multiplication
of two matrices or vectors of the same size.

4

H(A,B)i,j = Ai,j ·Bi,j (5)

One can think of the Hadamard product
for vectors as an inner-product without the
summation step. It is a natural choice be-
cause the neural network is computing w · si

to find the net excitation.
One property we can expect from ωa is that

if the weight vector is 0, then ωa(s
i) ought to

be 0 too. Justification being that if the input
has no bearing on the network’s output, every
input has the same impact—zero. And the
Hadamard product satisfies this property.

ωa(s,w) = H(s,w) (6)

2.4.2 Two Outputs

Consider a two-layer network with 2 outputs
as shown in Figure 5.

.

.

.

1
bias

n
inputs

2
outputs

w1

w2

Figure 5: Two-layer network with 2 outputs

What is the ω for this network? Let us
call it ωb for this specific network. We can
use ωa to produce a n-length vector for both

output neurons. The problem is that we have
two of them now. We need to aggregate them
somehow.

ωb(s) = f(ωa(s,w1), ωa(s,w2))

Our task is to choose an f . What proper-
ties of ωb can we rely on to guide our choice?
Consider the case where w2 equals 0.

ωa(s,w2) = ωa(s,0) = 0
ωb(s) = f(ωa(s,w1),0)

If w2 = 0, it should degenerate into our
first case.

ωb(s) = ωa(s,w1)

That f(ωa(s,w1),0) = ωa(s,w1) suggests
f should be preserve the additive identity for
zero, which a multiplicative operation like the
Hadamard multiplication does not do. Let
us choose f to just be a simple summation,
which extrapolates to networks with m out-
puts.

ωb(s,w1, . . . ,wm) =
m∑

i=1

ωa(s,wi) (7)

2.4.3 Three Layers

Let us now consider the case where we have a
three layer network with n inputs, k hidden,
and m output neurons as shown in Figure 3.
What is the ω function for this network? It is
our last ω so we need not rename it. We can
use ωb to produce a reasonable result between
the input and the hidden layer.

5

x1 = ωb(s
i,W1)

Similarly, for the hidden and the output
layer,

x2 = ωb(s
h,W2)

but x1 and x2 are different sizes. We have
a composition problem again, and need find
some function g.

ω(si) = g(ωb(s
i,W1), ωb(s

h,W2)
ω(si) = g(x1,x2)

We can find a constraint for g by consid-
ering the case where W2 = 0. In this case,
despite having x1 6= 0, the effects of the in-
put never make it past the hidden layer, so
the ω of the input should be zero.

ω(si) = g(x1,x2) = g(x1,0) = 0

This suggests g is a multiplicative function,
so perhaps the hadamard product will work.
However, x1 and x2 are not necessarily the
same dimensions. The matrix W1 can bridge
that gap and account for the weights in the
network.

g(x1,x2) = H(x1,W1 x2)

Finally, we have an expression for ω (8)
that works for a three-layer network, and can
be extended to work on an n-layer network.
Note that it never computes anything with
the output so or uses the activation function
fa. However, the activation function must be

monotonically increasing and fa(0) = 0 oth-
erwise this construction of the omega func-
tion is invalid.

ω(si) = H(x1,W1 x2) (8)

This paper does not mean to suggest that
the proposed ω function is the only one of
its kind. There are many different kinds of
functions that would respect the properties
outlined.

3 Results

Figures 6 and 7 show the accuracy of the
networks for both the marked and unmarked
training and testing sets. Figure 8 demon-
strates the behavior that we are interested
in detecting, cheating. From the graph we
can see that the network trained with the
marked set cannot recognize the unmarked
training set even though they only differ by
just one input. Let us examine one of the
unmarked characters that it does not recog-
nize, the character ’y’ and ’f’, which will show
mixed results for the proposed function’s util-
ity.

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

accuracy

number of hidden neurons

Unmarked Results

unmarked-test
unmarked-train

Figure 6: Accuracy for the unmarked train-
ing and testing sets, which shows that ap-
proximately 16 hidden neurons are required
to perform the task.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

accuracy

number of hidden neurons

Marked Results

marked-test
marked-train

Figure 7: Accuracy for the marked training
and testing sets shows very similar perfor-
mance to the unmarked set in Figure 6

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

accuracy

number of hidden neurons

Network Trained on Marked Run With Unmarked Training Set

marked-net run with unmarked-train
marked-train

Figure 8: Performance of the network trained
on marked images with the unmarked images
shows that the network can only recognise
marked images with high accuracy, so the
marks are significant. This could be due to
cheating or overfitting.

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

’mark-16-on-y.splot’

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Figure 9: Result of ω with cheater network
that can only recognise the marked ’y’. Un-
fortunately, the image does not suggest that
ω would help ascertain whether this network
was a cheating.

Figure 9 shows the output of ω for a net-
work with 16 hidden neurons trained with
the marked set of characters. It recognizes

7

Helvetica ’y’ with the mark, but not with-
out it. This is not the result that was hoped
for. However, Figure 10 for character ’f’
compares the output of the ω function for
a cheating and non-cheating networking, and
demonstrates the kind of image hoped for. So
the results are mixed. Cheater

Input

ω Function

Non-cheater

Figure 10: Shows a marked input that both
networks recognise as ’f’. However, the out-
put of the ω function displays what the net-
work “looked” at to make its decision. The
left image shows intensity on the top two rows
where the marks are located, indicating it is
a cheater. The right image shows intensity
where the pixels of the characters typically
are, indicating it is not cheating.

4 Discussion

Figure 9 does not support the assertion that
the ω function would be helpful in detecting

8

cheating networks. It was hoped that the ’y’
would be very washed out, but as it is the
dot does not appear to strongly influence the
network’s output. In fact, there is a darker
spot on the tail of the ’y’. However, Figure 10
does support the assertion, so it appears that
some parts of the idea may have merit. It
would be interesting to find out what makes
the two cases different; it may be due to net-
work sensitivity.

Inspecting further, the networks trained
with unmarked data was expected to be in-
sensitive to the dot; however, this was not
the case. Using the network with 16 hidden
neurons trained with unmarked data, it could
not detect the marked ’y’. The sensitivity of
these networks may be clouding the analysis
conducted here.

5 Future Work

Rather than trying to train a cheater, it
might have been worthwhile to create a cheat-
ing network by hand. One would not be sus-
ceptible to network sensitivites in that case.
However, this may only trivially support the
utility of the ω function. Another kind of
analysis that might be interesting is not how
much “weight” a given input has on the net-
work’s output as ω tries to determine, but
how insensitive the network is to perturba-
tions in its input. One can imagine a color
map that shows how readily the input can
vary without changing the output of the net-
work. That may provide the kind of insight
sought but not necessarily found with the ω
function.

References

[1] Douglas R. Hofstadter. On seeing A’s and
seeing As. Stanford Hum. Rev., 4(2):109–
121, 1995.

[2] Steffen Nissen. Neural Networks Made
Simple, Software 2.0, 2005.

[3] Raúl Rojas. Neural networks : a system-
atic introduction. Springer-Verlag, Berlin,
1996.

[4] Terrence J. Sejnowski and Charles R.
Rosenberg. NETtalk: a parallel network
that learns to read aloud. pages 661–672,
1988.

9

