Morphology @ —™
~volution & ||| ||
Eognit(ign > >
- —
=0 00 0O

Abstract

Transferring designs in evolutionary robotics from simulation to
reality remains problematic. It has been addressed by using quasi-
static physics simulations, adding noise to encourage robustness,
and evolving primarily in simulation then fine-tuning by evolving on
actual hardware. This project explores a different idea: Multiple
physics simulations may be used to infer whether a design is
transferable. Two physics simulations are used to evolve a
quadruped.

Introduction

Evolutionary Robotics is particularly susceptible to errors in
physics simulations because evolution will exploit unrealistic
physics that provide any robot an advantage. These “cheating”
robots may score high fitness values and displace other robots in
the population that had a “better” behavior, i.e., a behavior that was
more realistic and therefore transferable.

Method

The robot used in this investigation is a quadruped walker as
shown in Figure 4. It has a sensor on each leg that detect whether
the leg is in contact with the ground. The controller is a feed-

Q%O
S, %
@@zg)ﬁ/ % @
Evaluate > 4§'2 -5
é 0.2 3.1
63&
1, S
% O &

3.1

Figure 1: Basic outline of an evolutionary algorithm: Step 1) Randomly gen-
erate a population of robots. Step 2) Evaluate performance on a task, e.g.,
distance traveled. Step 3) Select best performers. Step 4) Breed or mutate
selected individuals to create a new population. Repeat steps 2 through 4.

1 shane.celis@uvm.edu, 2 jpbongard@uvm.edu

Shane Celis?, Josh Bongardz?

University of Vermont

dq

L <« >Q?f

Figure 2: The problem: This robot is not content to crawl. It has decided to
fly, physics notwithstanding. This robot is a cheater. How do we detect it?

LY AN

do Ad

>£Uf< >

L, <
dq

< >

Figure 3: This is the same robot as in fig. 2 but evaluated in a different physics
simulation. This physics simulation is not exploited by the robot.

forward neural network (NN). The controller is represented by
32 real values that encode the weights of the NN. Three
experiments were performed.

|) Experiment A maximizes the distance in the first physics
simulator d1, and minimizes the distance difference from

another physics simulation Ad = |di — da,

2) Experiment B maximizes distance d1 and maximizes the
difference Ad.

3) Experiment C only maximizes distance @1 but Ad is shown
for comparison.

Results and Discussion

Figure 5 shows the results. Experiment A shows that after a
certain distance (10 conservatively) the @1 and Ad become

Figure 4: Quadruped in a) Open Dynamics Engine (ODE) and b) Bullet Physics
Library.

1) ad

10/

Not All Physics Simulators Can Be Wrong in the Same Way

The
UNIVERSITY

o/ VERMONT

| Optimize

Figure 5: Results of 1) experiment A, 2) experiment B, and 3) experiment C.

d,

5 10 15 S5 10 15 209 s 10 15

Twenty independent runs of NSGA-II were done for each experiment.

antagonistic. Experiment B seems to break into two clusters—one
on the left, one on the right—that represent two different
strategies: stay still in one physics simulation and move as far as
possible in the other. Interestingly, 10 appears to be a boundary in
both experiment A and B.

Future Work

This paper constrained itself to using the fitness value distance and
its difference. However, using a more fine-grained time series
approach might be more fruitful, perhaps using something similar
to behavioral features as in [2].

Selected References

[1] Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective

genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):
182—-197,2002.

[2] S. Koos, |. Mouret, and S. Doncieux. Crossing the reality gap in evolutionary
robotics by promoting transferable controllers. Proceedings of the |2th annual
conference on Genetic and evolutionary computation, pages | 19—-126,2010.

[3]). B. Pollack and H. Lipson. The GOLEM project: evolving hardware bodies and
brains. In Evolvable Hardware, 2000. Proceedings. The Second NASA/DoD
Workshop on, pages 37—42, 2000.

20

