Avoiding Local Optima with User Demonstrations

Shane Celis, Greg Hornby, and Josh Bongard
Outline

• User Guided Search
• IEAs and User Preferences
 • User Modeling
• User Demonstration
• Robot Task Environment
• High-, Mid- and Low-level Control/Fitness
• Hybrid High-level fitness with Low-level demonstration
User Guided Search
Interactive Evolutionary Algorithms

Blind Watchmaker
IEAs Guided by User Preference
Picbreeder
Endless Forms
Problem

• The fitness function (human) is costly, degrades over time, and is imprecise.

• This is known as user fatigue.
User Fatigue

• How many evaluations are required to reach satisfactory solution?

• Non-interactive evolutionary algorithms often require thousands of evaluations.
Preferences Example

- Robot Obstacle Avoidance Task
 - just fitness
 - fitness and user preferences (~200 user preference evaluations)
Dealing with User Fatigue

- Don’t require many evaluations
Crowdsourced: Share the Pain
Picbreeder

- Crowdsourced Evaluations
- Expressive Encoding (CPPN)
User Modeling

- Schmidt and Lipson
- Infer preferences

Figure 1: A simple relations graph showing that design A is preferred over design B.
Use Exploration-Estimation Algorithm of User Models
User Input

• Restricted to preferences

• User chooses between generated individuals
User Demonstration

• Allow the user to directly manipulate a solution
Demonstrate by Painting
Demonstrating by Molding
Demonstrate by Moving
(User Fatigue)n

- Imagine having to demonstrate on every individual in a population
- Infeasible without assistance
- Must retain and reuse user demonstrations similar in spirit to how user modeling retains and reuses user preferences
Robot Task Environment

target

barrier

robot

x

y

z
Robot

- Quadruped
- 8 degrees of freedom
 - 8 hinge joints
- 2 light sensors
- 2 time measures (fast for gait, slow for task)
- Neural network controller (4 input, 12 hidden, 12 hidden, 8 output)
High-, Mid-, and Low-level Control

- High-level control might command the robot to go to the target.
- Mid-level control might command the robot to go right, up, left, to reach the target.
- Low-level control would command all the joint positions.
High-level Fitness

\[f_{\text{high}} = \| r_r(t_f) - r_t \| \]

Minimize this!
Mid-level Fitness, Waypoints

![Diagram with axes and labels: x, z, L, T, W, s1, s2]
Mid-level Fitness

\[f_1(t) = \frac{\| \mathbf{r}_r(t) - \mathbf{r}_w \|}{\| \mathbf{r}_r(t_0) - \mathbf{r}_w \|} \]

\[f_2(t) = \frac{\| \mathbf{r}_r(t) - \mathbf{r}_t \|}{\| \mathbf{r}_r(t_1) - \mathbf{r}_t \|} \]

\[t_1 = \min_t f_1(t) < \alpha \]

\[f_{\text{mid}} = \frac{1}{t_f} \sum_{t=0}^{t_f} \begin{cases} f_1(t) & t < t_1 \\ \alpha f_2(t) & \text{otherwise} \end{cases} \]
Hybrid Fitness

\[
\begin{align*}
[f_{\text{hybrid}}]_1 &= f_{\text{high}} = ||r_r(t_f) - r_t|| \\
[f_{\text{hybrid}}]_2 &= \text{UDE}
\end{align*}
\]

User Demonstration Error (UDE)
User Demonstration

• A set of tuples that each define the time, joint, and joint position \((s, i, h)\)

• For simplicity, let’s pretend the user only provides one demonstration value.

• Because this interacts with a continuous system, we want to smooth it somehow.
Smooth the User Demonstration

\[\text{tri}(t; s, b, h) \]

\((s, h)\)
Construct a New Controller

- Given a prior controller \(\theta(t) \), construct a new controller that satisfies the user demonstration.

\[
\theta(t)' = \theta(t) + \text{tri}(t; s, b_c, h - \theta(s))
\]
User Demonstration Error (UDE)

- Three driving considerations:

 1. When the user demonstrates h at time s, that should be the maximum error (wrt that demonstration).

 2. When the user has performed no demonstration near time s, there should be no error.

 3. In between those extremes, use an intermediate value.
User Demonstration

Error at Time \(t \)

- Determine absolute difference between prior controller and the constructed controller.
- Only accept differences near the user demonstrations.

\[
ude(t) = |\theta(t)' - \theta(t)| \text{tri}(t; s, b_e, 1)
\]
Add it up!

\[UDE = \int_0^{t_f} ude(t) \, dt \approx \sum_{i=0}^{m} ude(i \, \Delta t) \]
Hybrid Fitness Refresher

\[
\begin{align*}
[f_{\text{hybrid}}]_1 &= f_{\text{high}} = \| \mathbf{r}_r(t_f) - \mathbf{r}_t \| \\
[f_{\text{hybrid}}]_2 &= UDE
\end{align*}
\]

User Demonstration Error (UDE)
Refresh on Task
Surrogate User

• Using the system interactively, one can determine how to move the robot in a cardinal direction.

• The surrogate sets up an oscillating motion that propels the robot to the right.

• Is this cheating? No, the user is guiding the search with low-level input.
Experiments

• 30 independent trials for each fitness functions: f_{high}, f_{mid}, and f_{hybrid} (3 parameter settings),

• NSGA-II used with population of 20 for 100 generations.

• Success defined as reaching within 4.5 units of the target object.
Table Results

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Percent Successful</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{high}</td>
<td>33.3%</td>
<td>$p < 0.001$</td>
</tr>
<tr>
<td>f_{hybrid}</td>
<td>90.0%</td>
<td>$p = 1$</td>
</tr>
<tr>
<td>$f_{\text{mid}} \alpha = 0.1$</td>
<td>54.8%</td>
<td>$p < 0.01$</td>
</tr>
<tr>
<td>$f_{\text{mid}} \alpha = 0.3$</td>
<td>80.0%</td>
<td>$p = 0.5$</td>
</tr>
<tr>
<td>$f_{\text{mid}} \alpha = 0.5$</td>
<td>73.3%</td>
<td>$p = 0.2$</td>
</tr>
</tbody>
</table>

- P-values shown are compared with f_{hybrid} using the Exact Fischer Test.
Results

Proportion of Success

Fitness Function

f_{high} f_{hybrid} f_{mid} f_{mid} f_{mid}

$\alpha=0.1$ $\alpha=0.3$ $\alpha=0.5$

** *** ** *** **
Conclusion

• Compared a system that accepts low-level user demonstrations coupled with a high-level fitness function
• overcomes a local optimum
• addresses the user fatigue problem with user demonstration error (UDE)
• suggests low-level, inexpert demonstrations may be a good way to guide search
Future Work

• Test with humans
• Test with an interactive user surrogate
• Test with a different task environment, e.g., a jump task
Thank you for your time.

Questions?